## Research Article

# Spectral analysis of the SturmLiouville operator given on a system of segments 

Snizhana Vovchuk*<br>Spectral theory Department, VN Karazin Kharkiv National University, Ukraine

Received: 20 January, 2023
Accepted: 06 February, 2023
Published: 07 February, 2023
*Corresponding author: Snizhana Vovchuk, Spectral theory Department, VN Karazin Kharkiv National University, Ukraine, Tel: +380984734995, E-mail: snezhana.vovchuk@gmail.com

ORCiD: https://orcid.org/0000-0001-6187-0059
Keywords: The Sturm-Liouville operator; The spectral function; The potentiallntroduction

Copyright License: © 2023 Vovchuk S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
https://www.peertechzpublications.com
Check for updates

The spectral analysis of the Sturm-Liouville operator defined on a finite segment is the subject of an extensive literature [1,2]. Sturm-Liouville operators on a finite segment are well studied and have numerous applications [1-6]. The study of such operators already given on the system segments (graphs) was received in the works [7,8]. This work is devoted to the study of operators

$$
\left(L_{q} y\right)(x)=\operatorname{col}\left[-y_{1}^{\prime \prime}(x)+q_{1}(x) y_{1}(x),-y_{2}^{\prime \prime}(x)+q_{2}(x) y_{2}(x)\right],
$$

where $y(x)=\operatorname{col}\left[y_{1}(x), y_{2}(x)\right] \in L^{2}(-a, 0) \oplus L^{2}(0, b)=H, q_{1}(x), q_{2}(x)$ - real function $q_{1} \in L^{2}(-a, 0), q_{2} \in L^{2}(0, b)$. Domain of definition $L_{q}$ has the form

$$
\vartheta\left(L_{q}\right)=y=\left(y_{1}, y_{2}\right) \in H ; y_{1} \in W_{1}^{2}(-a, 0), y_{2} \in W_{2}^{2}(0, b), y_{1}^{\prime}(-a)=0, y_{2}^{\prime}(b)=0 ; y_{2}(0)+p y_{1}^{\prime}(0)=0 ; y_{1}(0)+p y_{2}^{\prime}(0)=0
$$

( $p \in \mathbb{R}, p \neq 0$ ). Such an operator is self-adjoint in $H$. The work uses the methods described in work [9,10]. The main result is as follows: if the $q_{1}, q_{2}$ are small (the degree of their smallness is determined by the parameters of the boundary conditions and the numbers a,b), ), then the eigenvalues $\left\{\lambda_{k}(0)\right\}$ of the unperturbed operator $L_{o}$ are simple, and the eigenvalues $\left\{\lambda_{k}(q)\right\}$ of the perturbed operator $L_{q}$ are also simple and located small in the vicinity of the points $\left\{\lambda_{k}(0)\right\}$.

## Introduction

The operator $L_{q}$ describes the oscillatory processes of a system located on two intervals. In other words, the vibrations of connected rods are connected with the spectral analysis of the operator $L_{q}$. The purpose of this work is to establish at what smallness of the potentials the spectrum of the problem differs slightly from the spectrum of the unperturbed problem.

## Unperturbed operator

Consider the Hilbert space $H=L^{2}(-a, 0) \oplus L^{2}(0, b),(a, b \geq 0)$ by vector functions $y(x)=\operatorname{col}\left[y_{1}(x), y_{2}(x)\right]$, where $y_{1} \in L^{2}(-a, 0), y_{2} \in L^{2}(0, b)$. Define in $H$ a linear operator
$\left(L_{q} y\right)(x)=\operatorname{col}\left[-y_{1}^{\prime \prime}(x)+q_{1}(x) y_{1}(x),-y_{2}^{\prime \prime}(x)+q_{2}(x) y_{2}(x)\right]$,
Where $q_{1}, q_{2}$ - real function and $q_{1}(x) \in L^{2}(-a, 0), q_{2} \in L^{2}(0, b)$.
The domain of definition of the operator $L_{q}$ has the form,

$$
\begin{align*}
& \vartheta\left(L_{q}\right)=\left\{y=\operatorname{col}[y 1, y 2] \in H ; y_{1} \in W_{1}^{2}(-a, 0), y_{2} \in W_{2}^{2}(0, b), y_{1}^{\prime}(-a)=0, y_{2}^{\prime}(b)=0, y_{2}(0)+p y_{1}(0)=0,\right.  \tag{1.2}\\
& \left.y_{1}^{\prime}(0)+p y_{2}^{\prime}(0)=0\right\}
\end{align*}
$$

( $p \in \mathbb{R}, p \neq 0$ ). The operator $L_{q}(1.1),(1.2)$ is symmetric because
$\left\langle L_{q} y, g\right\rangle-\left\langle y, L_{q} g>=-\left.y_{1}^{\prime}(x) \bar{g}_{1}(x)\right|_{-a} ^{0}+\left.y_{1}(x) \bar{g}_{1}^{\prime}(x)\right|_{-a} ^{0}-\left.y_{2}^{\prime}(x) \bar{g}_{2}(x)\right|_{0} ^{b}+\left.y_{2}(x) \bar{g}_{2}^{\prime}(x)\right|_{0} ^{b}=\right.$
$=p y_{2}^{\prime}(0) \bar{g}_{1}(0)-p \bar{g}_{2}^{\prime}(0) y_{1}(0)-p \bar{g}_{1}(0) y_{2}^{\prime}(0)+p y_{1}(0) \bar{g}_{2}^{\prime}(0)=0$.
It is easy to show that $L_{q}(1.1),(1.2)$ is self-adjoint.
Primary study the unperturbed operator $L_{o}\left(q_{1}=q_{2}=0\right)$. Respectively, the function of operator $L_{o}$ is a solution to the equations
$-y_{1}^{\prime \prime}=\lambda^{2} y_{1},-y_{2}^{\prime \prime}=\lambda^{2} y_{2} \quad(\lambda \in \mathbb{C})$
and satisfies the boundary conditions (1.2). From the first two boundary conditions we find that

$$
\begin{equation*}
y_{1}=A \cos \lambda(x+a), y_{2}=B \cos \lambda(x-b), \tag{1.4}
\end{equation*}
$$

where $A, B, C \epsilon \mathbb{C}$. Second and third boundary $\left\{y_{1}, y_{2}\right\}$ (1.4) give a system of equations for $A$ and $B$,

$$
\left\{\begin{array}{c}
A p \cos \lambda a+B \cos \lambda b=0, \\
-A \lambda \sin \lambda a+B p \lambda \sin \lambda b=0 . \tag{1.5}
\end{array}\right.
$$

This system has non-trivial solution $A$ and $B$, if only its determinant $\Delta(0, \lambda)=0$, where
$\Delta(0, \lambda)=\lambda p^{2} \cos \lambda a \sin \lambda b+\lambda \cos \lambda b \sin \lambda a$.
If $\lambda=0$, then $y_{1}=A, y_{2}=B$ and from $y_{2}(0)+p y_{1}(0)=0$ follows that $B=-p A$. So $y=A \operatorname{col}[1,-p](A \in \mathbb{C})$ operator's own function $L_{o}$, responding to its own value $\lambda=0$ With $\lambda \neq 0$ from $\Delta(0, \lambda)=0$ follows
$p^{2} \cos \lambda a \sin \lambda b+\cos \lambda b \sin \lambda a=0$,

## Remark 1

If $p= \pm 1$, that from (1.7) follow $\sin \lambda(a+b)=0$ and hence the own numbers have the form
$\lambda_{n}=\frac{\pi n}{a+b} \quad(n \in \mathbb{Z}), a+b \neq 0$
Consider the general case, not assuming, that $p \pm 1$ and write equality (1.7) in form
$\left(p^{2}+1\right) \sin \lambda(a+b)-\left(1-p^{2}\right) \sin \lambda(b-a)=0$
or
$\sin \lambda(a+b)-\frac{\left(1-p^{2}\right)}{\left(1+p^{2}\right)} \sin \lambda(b-a)=0$
Let be
$\lambda(b+a)=w, \frac{1-p^{2}}{1+p^{2}}=k, \frac{b-a}{b+a}=q$,
then it is obvious that $|k| \leq 1,|q| \leq 1$, and the equation (1.9) has form

$$
\begin{equation*}
f(w)=0 ; f(w) \stackrel{\text { def }}{=} \sin w-k \sin q w \tag{1.11}
\end{equation*}
$$

The function $f(w)$ is odd, therefore it is enough to find its zeros $f(w)$ on the ray $\mathbb{R}_{+}$.
Show that the zeros of $f(w)$ are simple. Assuming the opposite, suppose that $w$ - repeated root, then from $f(w)$ and $f^{\prime}(w)=0$, follows, that
$\left\{\begin{array}{c}\sin w=k \sin q w \\ \cos w=k q \cos q w\end{array}\right.$
That means
$k^{2} \sin ^{2} q w+k^{2} q^{2} \cos ^{2} q w=1$
that's why
$\sin ^{2} q w+q^{2} \cos ^{2} q w=\frac{1}{k^{2}}$
Since $|k| \leq 1$ ( $k=1$ which $p=0$, isimpossiblebyassumption) and $|q|<1$, then from (1.12) follows that the left side $\sin ^{2} q w+q^{2} \cos ^{2} q w \leq 1$, and right side $\frac{1}{k^{2}}>1$. That's why roots $f(w)$ are simple.

## Theorem 1

Roots $\left\{\lambda_{s}(0)\right\}$ of the characteristic function $\Delta(0, \lambda)(1.6)$ are simple except $\lambda_{o}(0)=0$ which is duble multiple and they have the form,
$\Lambda_{0}=\left\{0, \lambda_{s}(0)= \pm \frac{w_{s}}{a+b}, w_{s}>0 ; \sin w_{s}=k \sin q w_{s}\right\}$,
where kiq-have of form (1.10), and the numbers $w_{s} \in \mathbb{R}_{+}$are numbered in ascending order.

## Remark 2

Greatest positive root $w_{1}$ equation $f(w)=o$ obviously lies in the interval $\frac{\pi}{2}<w_{1}<\pi$ and that mean $\frac{\pi}{2(a+b)}<\lambda_{1}(0)<\frac{\pi}{a+b}$.
Eigenfunctions $\varphi\left(0, \lambda_{s}(0)\right)$ of operator $L_{0}$ responding $\lambda_{s}(0) \epsilon \Lambda_{0}$ (1.13) are equal
$\varphi\left(0, \lambda_{s}(0)\right)=A_{s} \operatorname{col}\left[\cos \lambda_{s}(0) b \cos \lambda_{s}(0)(x+a),-p \cos \lambda_{s}(0) a \cos \lambda_{s}(0)(x-b)\right]$,
which is an obvious consequence (1.4), (1.5)

## Perturbed operator

Let's move on to the perturbed operator $L_{q}$. The equation for the eigenfunction $y=\operatorname{col}\left[y_{1}, y_{2}\right]$ of operator $L_{q}$ has the form
$-y_{1}^{\prime \prime}+q_{1} y_{1}=\lambda^{2} y_{1},-y_{2}^{\prime \prime}+q_{2} y_{2}=\lambda^{2} y_{2}$
Consider the integral equations
$\left\{\begin{array}{l}y_{1}(x)=A \cos \lambda(x+a)+\int_{a}^{x} \frac{\sin \lambda(x-t)}{\lambda} q_{1}(t) y_{1}(t) d t ; \\ y_{2}(x)=B \cos \lambda(x-b)-\int_{x}^{b} \frac{\sin \lambda(x-t)}{\lambda} q_{2}(t) y_{2}(t) d t .\end{array}\right.$
Then $\left\{y_{k}(x)\right\}$ - ) solution (2.2) satisfy the equations (2.1), and the first boundary conditions (1.2) correspond to $y_{1}, y_{2}$. Solvability of the integral equation (2.2) for $y_{i}$. Definition of Volterra operator in $L^{2}(-a, 0)$,

$$
\begin{equation*}
\left(K_{1} f\right)(x)=\int_{-a}^{x} K_{1}(x, t) q_{1}(t) f(t) d t \quad\left(f \in L^{2}(-a, 0)\right) \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(K_{1} f\right)(x)=\frac{\sin \lambda(x-t)}{\lambda} . \tag{2.4}
\end{equation*}
$$

Then the first of the equations in (2.2) will take the form

$$
\begin{equation*}
\left(I-K_{1}\right) y_{1}=A \cos \lambda(x-t), \tag{2.5}
\end{equation*}
$$

And that means

$$
\begin{equation*}
y_{1}=\sum_{n=0}^{\infty} K_{1}^{n} A \cos \lambda(x+a) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(K_{1}^{n} f\right)(x)=\int_{-a}^{x} K_{1, n}(x, t) q_{1}(t) f(t) d t \tag{2.7}
\end{equation*}
$$

For cores $K_{1, n}(x, t)$ the recurrence relations are valid

$$
\begin{equation*}
K_{1, n+1}(x, t)=\int_{t}^{x} K_{1}(x, s) K_{1, n}(s, t) q_{1}(s) d t \quad(n>1) \tag{2.8}
\end{equation*}
$$

where $K_{1}(x, t)$ have from (2.4)
We need kernel estimates $K_{1, n}(x, t)$ to prove the solvability of the integral equations.

## Lemma 1

The kernels $K_{1, n}(x, t)(2.8)$ satisfy the inequalities

$$
\begin{equation*}
\left|K_{1, n}(x, t)\right| \leq \operatorname{ch} \beta(x-t) \frac{(x-t)^{n}}{n^{n}} \cdot \frac{\sigma_{1}^{n-1}(x)}{(n-1)!} \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta=\operatorname{Im} \lambda, \quad \sigma_{1}(x)=\int_{-a}^{x}\left|q_{1}(t)\right| d t \tag{2.10}
\end{equation*}
$$

The proof of the estimates (2.9) is carried out by induction From (2.6) it follows, that

where
$N_{1}(x, t, \lambda)=\sum_{n=1}^{\infty} K_{1, n}(x, t)$.
it follows from the estimates (2.9) that this series converges and
$\left|N_{1}(x, t, \lambda)\right| \leq \cosh \beta(x-t)(x-t) \exp \left[(x-t) \sigma_{1}(x)\right]$
Similar reasoning is valid for the second equation (2.2).
Theorem 2
Integral equations (2.2) are resolved and,-

$$
\left\{\begin{array}{l}
y_{1}(\lambda, x)=A\left(\cos \lambda(x+a)+\int_{-a}^{x} N_{1}(x, t, \lambda) q_{1}(t) \cos \lambda(t+a) d t\right)  \tag{2.11}\\
y_{2}(\lambda, x)=B\left(\cos \lambda(b-x)-\int_{x}^{b} N_{2}(x, t, \lambda) q_{2}(t) \cos \lambda(b-t) d t\right),
\end{array}\right.
$$

In this case, the kernels $\left.\left\{N_{k}(x, t, \lambda)\right\}\right)$ satisfy the estimates

$$
\begin{equation*}
\left|N_{k}(x, t, \lambda)\right| \leq \cosh \beta(x-t) \cdot(x-t) \cdot \exp \left\{(x-t) \sigma_{k}(t)\right\}(k=1,2), \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta=\operatorname{Im} \lambda, \quad \sigma_{1}(x)=\int_{-a}^{x}\left|q_{1}(t)\right| d t, \quad \sigma_{2}(x)=\int_{x}^{b}\left|q_{2}(t)\right| d t \tag{2.13}
\end{equation*}
$$

To find a characteristic function $\Delta(q, \lambda)$ the operator $L_{q} L$ uses the last boundary conditions (1.2) for the $\left\{y_{k}(\lambda, x)\right\}$, ), as a result, we obtain a one-row system of equations for $A$ and $B,-$

$$
\left\{\begin{array}{l}
p A\left(\cos \lambda a+\int_{-a}^{0} N_{1}(0, t, \lambda) q_{1}(t) \cos \lambda(t+a) d t\right)+B\left(\cos \lambda b-\int_{0}^{b} N_{2}(0, t, \lambda) q_{2}(t) \cos \lambda(b-t) d t\right)=0, \\
A\left(-\lambda \sin \lambda a+\int_{-a}^{0} N_{1}^{\prime}(0, t, \lambda) q_{1}(t) \cos \lambda(t+a) d t\right)+p B\left(\lambda \sin \lambda b-\int_{0}^{b} N_{2}^{\prime}(0, t, \lambda) q_{2}(t) \cos \lambda(b-t) d t\right)=0 \tag{2.14}
\end{array}\right.
$$

System (2.14) at this value $q_{1}=q_{2}=o$ coincides with the system (1.5) and it has a nontrivial solution $A, B$, if its determinant $\Delta(q, \lambda)=0$, where

$$
\left.\Delta(q, \lambda) \stackrel{\operatorname{def}}{=} \left\lvert\, \begin{array}{lr}
p\left(\cos \lambda a+\int_{-a}^{0} N_{1}(0, t, \lambda) q_{1}(t) \cos \lambda(t+a) d t\right) & \cos \lambda b-\int_{0}^{b} N_{2}(0, t, \lambda) q_{2}(t) \cos \lambda(b-t) d t \\
-\lambda \sin \lambda a+\int_{-a}^{0} N_{1}^{\prime}(0, t, \lambda) q_{1}(t) \cos \lambda(t+a) d t & p\left(\lambda \sin \lambda b-\int_{0}^{b} N_{2}^{\prime}(0, t, \lambda) q_{2}(t) \cos \lambda(b-t) d t\right.
\end{array}\right.\right) \mid
$$

## It follows that,

$$
\begin{equation*}
\Delta(q, \lambda)=\Delta(0, \lambda)+\Phi(\lambda) \tag{2.16}
\end{equation*}
$$

where $\Delta(0, \lambda)$ ) have form (1.6), and $\Phi(\lambda)$ is equal

$$
\begin{align*}
& \Phi(\lambda)=p^{2}\left\{\lambda \sin \lambda b \int_{-a}^{0} N_{1}(0, t, \lambda) q_{1}(t) \cos \lambda(t+a) d t-\cos \lambda a \int_{0}^{b} N_{2}^{\prime}(0, t, \lambda) q_{2}(t) \cos \lambda(b-t) d t-\right. \\
& \left.-\int_{-a}^{0} N_{1}(0, t, \lambda) q_{1}(t) \cos \lambda(t+a) d t \times \int_{0}^{b} N_{2}^{\prime}(0, t, \lambda) q_{2}(t) \cos \lambda(b-t) d t\right\}- \\
& -\lambda \sin \lambda a \int_{0}^{b} N_{2}(0, t, \lambda) q_{2}(t) \cos \lambda(b-t) d t-\cos \lambda b \int_{-a}^{0} N_{1}^{\prime}(0, t, \lambda) q_{1}(t) \cos \lambda(t+a) d t+  \tag{2.17}\\
& +\int_{0}^{b} N_{2}(0, t, \lambda) q_{2}(t) \cos \lambda(b-t) d t \cdot \int_{-a}^{0} N_{1}^{\prime}(0, t, \lambda) q_{1}(t) \cos \lambda(t+a) d t
\end{align*}
$$

Let us formulate a theorem that shows how strongly the characteristic functions of the perturbed and unperturbed operators differ.

## Theorem 3

Operator characteristic function $\Delta(q, \lambda)(2.15)$ is expressed in terms of the operator $L_{q}(1.1),(1.2)$ characteristic function $\Delta(0, \lambda)(1.6) L_{o}$ $\left(q_{1}=q_{2}=0\right)$ ) by the formula (2.16), where $\Phi(\lambda)$ has the fo (2.17) and is an entire function of exponential type while it satisfies the estimate

$$
\begin{equation*}
|\Phi(\lambda)| \leq \operatorname{ch} \beta a \cdot \operatorname{ch} \beta b \cdot\left(\delta_{1}|\lambda|+\delta_{2}\right) \tag{2.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta_{1} \stackrel{\text { def }}{=} \sigma_{1} a e^{\sigma_{1} a}+\sigma_{2} b e^{\sigma_{2} b}, \delta_{2} \stackrel{\text { def }}{=} \sigma_{1} e^{\sigma_{1} a}+\sigma_{2} e^{\sigma_{2} b}+\sigma_{1} \sigma_{2}(a+b) e^{\sigma_{1} a+\sigma_{2} b} \tag{2.19}
\end{equation*}
$$

and $\beta=\operatorname{Im} \lambda, \sigma_{1}=\sigma_{1}(0), \sigma_{2}=\sigma_{2}(0)$.
Proof The estimates are similarly (2.12) valid
$\left|\frac{\partial}{\partial x} N_{k}(x, t, \lambda)\right| \leq \operatorname{ch} \beta(x-t) \exp \left\{\sigma_{k}(x)(x-t)\right\}(k=1,2)$,
therefore, it follows from (2.17) that
$|\Phi(\lambda)| \leq p^{2}\left\{|\lambda| \operatorname{ch} \beta b \cdot \cos \beta a \cdot e^{\sigma_{1} a} \sigma_{1} a+\operatorname{ch} \beta a \cdot \operatorname{ch} \beta b \cdot e^{\sigma_{2} b} \sigma_{2}+a \cdot \operatorname{ch} \beta a \cdot \operatorname{ch} \beta b \cdot e^{\sigma_{1} a} \cdot e^{\sigma_{2} b} \sigma_{1} \sigma_{2}\right\}+$
$+|\lambda| \operatorname{ch} \beta a \operatorname{ch} \beta b e^{\sigma_{2} b} \sigma_{2} b+\operatorname{ch} \beta b \cdot \operatorname{ch} \beta a \cdot e^{\sigma_{1} a} \sigma_{1}+b \operatorname{ch} \beta a \cdot \operatorname{ch} \beta b \cdot e^{\sigma_{1} a} \cdot e^{\sigma_{2} b} \sigma_{1} \sigma_{2}$.
Thus,
$|\Phi(\lambda)| \leq \operatorname{ch} \beta b \cdot \operatorname{ch} \beta a\left\{\sigma_{1} \cdot e^{\sigma_{1} a}\left(1+|\lambda| p^{2} a\right)+\sigma_{2} \cdot e^{\sigma_{2} b}\left(b|\lambda|+p^{2}\right)+\sigma_{1} \sigma_{2} e^{\sigma_{1} a+\sigma_{2} b}\left(b+p^{2} a\right)\right\}$

And since $p^{2}<1$,) then
$|\Phi(\lambda)| \leq \operatorname{ch} \beta a \cdot \operatorname{ch} \beta b\left\{|\lambda|\left(\sigma_{1} a e^{\sigma_{1} a}+b \sigma_{2} e^{\sigma_{2} b}\right)+\sigma_{1} e^{\sigma_{1} a}+\sigma_{2} e^{\sigma_{2} b}+\sigma_{1} \sigma_{2} e^{\sigma_{1} a+\sigma_{2} b}(b+a)\right\}$
which proves (2.18).

## Basic assessments

Characteristic function $\Delta(o, \lambda)(1.6)$ taking into account these (1.7),(1.8) is equal to,$\Delta(0, \lambda)=\lambda\left(p^{2}+1\right) Q(\lambda) ; Q(\lambda)=\frac{\text { def }}{=} \sin \lambda(a+b)-k \sin q \lambda(a+b)$,
where $q, k$ has form (1.10) and $|k| \leq 1,|q| \leq 1$. Let us expand $Q(\lambda)$ by the Taylor formula in a real neighborhood of the point $\lambda_{s}(0)(\neq 0)$ (1.13),

$$
Q(\lambda)=\left(\lambda-\lambda_{s}\right) Q^{\prime}\left(\lambda_{s}\right)+\frac{\left(\lambda-\lambda_{s}\right)^{2}}{2} Q^{\prime \prime}\left(\xi_{s}\right)=\left(\lambda-\lambda_{s}\right) Q^{\prime}\left(\lambda_{s}\right)\left(1+\frac{\left(\lambda-\lambda_{s}\right)^{2}}{2} \cdot \frac{Q^{\prime \prime}\left(\xi_{s}\right)}{Q^{\prime}\left(\lambda_{s}\right)}\right),
$$

where $\lambda \in \mathbb{R}$ i $\xi_{s}=\lambda_{s}+\theta\left(\lambda-\lambda_{s}\right)(|\theta| \leq 1)$ for all $\lambda$ satisfy the condition

$$
\begin{equation*}
\left.\left|\lambda-\lambda_{s}\right|<\frac{Q^{\prime}\left(\lambda_{s}\right)}{Q^{\prime \prime}\left(\xi_{s}\right.} \right\rvert\, \tag{3.2}
\end{equation*}
$$

the inequality is true

$$
\begin{equation*}
Q(\lambda)>\frac{\left|\lambda-\lambda_{s}\right|}{2} Q^{\prime}\left(\lambda_{s}\right) \tag{3.3}
\end{equation*}
$$

Because
$Q^{\prime}(\lambda)=(a+b)[\cos \lambda(a+b)-k q \cos q \lambda(a+b)]$
$Q^{\prime \prime}(\lambda)=-(a+b)^{2}\left[\sin \lambda(a+b)-k q^{2} \sin \lambda q(a+b)\right]$
then
$\left|Q^{\prime \prime}(\lambda)\right| \leq(a+b)^{2}\left(1+\left|k q^{2}\right|\right)<(a+b)^{2}(1+|k|) \quad$ (3.5)
To get a lower estimate for the $\left|Q^{\prime}\left(\lambda_{s}\right)\right|$ we use the (3.4), then we get
$\left(Q^{\prime}(w)\right)^{2}=(a+b)^{2}\left\{\cos ^{2} w-2 k q \cos w \cdot \cos q w+k^{2} q^{2} \cos 2 q w\right\}=(a+b)^{2}$.
$\left\{1-\sin ^{2} w+k^{2} q^{2}\left(1-\sin ^{2} q w\right)-2 k q \cos q w \cos w\right\}$,
Where $w=\lambda(a+b)$ and $\sin w=k s i n q w$. This implies that

$$
\begin{aligned}
& \left(Q^{\prime}(w)\right)^{2} \geq(a+b)^{2}\left\{1+k^{2} q^{2}-\sin ^{2} w\left(1+q^{2}\right)-2|k q| \sqrt{\left(1-\sin ^{2} w\right)\left(1-\sin ^{2} q w\right)}\right\} \geq \\
& \geq(a+b)^{2}\left\{1+k^{2} q^{2}-\sin ^{2} w\left(1+q^{2}\right)-2|k q|\left(1-k^{2} \sin ^{2} q w\right)\right\} \geq(a+b)^{2}\left\{1-|k q|^{2}-\sin ^{2} w\left(1-|q|^{2}\right)\right\} \geq \\
& \geq(a+b)^{2}(|q|(1-|k|))(2-|q|-|q k|)>2(a+b)^{2}|q|(1-|q|)(1-|k|) .
\end{aligned}
$$

Then

$$
\begin{align*}
& \left|Q^{\prime}\left(\lambda_{s}(0)\right)\right|>\sqrt{2}(a+b) \sqrt{|q|(1-|k|)(1-|q|)}>  \tag{3.7}\\
& >(a+b)|q|(1-|q|)(1-|k|)=(a+b)|q| r,
\end{align*}
$$

where

$$
\begin{equation*}
r=(1-|q|)(1-|k|)=4 \frac{\min (a, b) \min \left(1, p^{2}\right)}{(a+b)\left(p^{2}+1\right)}<1, \tag{3.8}
\end{equation*}
$$

Based on (1.10) therefore, according to (3.7), (3.8) the inequality (3.2) is certainly satisfied if
$\left|\lambda-\lambda_{s}\right|<\frac{|q| r}{(a+b)(1+|k|)}$

## Lemma 2

For all real $\lambda$, from the neighborhood

$$
\begin{equation*}
\left|\lambda-\lambda_{s}\right|<\frac{|q| r}{(a+b)(1+|k|)}=R \tag{3.9}
\end{equation*}
$$

of the zero ${ }_{s}(0)$ of the function $\Delta(0, \lambda)(1.6)$, the inequality is valid

$$
\begin{equation*}
|\Delta(0, \lambda)|>\frac{\left|\lambda-\lambda_{s}(0)\right|}{2}|\lambda|\left(1+p^{2}\right) Q^{\prime}\left(\lambda_{s}(0)\right)>\frac{\left|\lambda-\lambda_{s}(0)\right|}{2}|\lambda|\left(1+p^{2}\right)(a+b)|q| r, \tag{3.10}
\end{equation*}
$$

Where $r, q$ has form (1.10), (3.8)

It follows from the (2.16) that
$|\Delta(q, \lambda)|>|\Delta(0, \lambda)|-|\Phi(\lambda)|$.
We choose $\lambda \in R$ from the neighborhood (3.9) $\left|\lambda-\lambda_{s}(0)\right|<R$ of the zero $\lambda_{s}(0)(\neq 0)$ of the function $\Delta(0, \lambda)$, then using (2.18) ( $\beta=0$ ) and (3.10) we obtain that

$$
|\Delta(q, \lambda)|>\frac{\left|\lambda-\lambda_{s}(0)\right|}{2}|\lambda|\left(1+p^{2}\right) Q^{\prime}\left(\lambda_{s}(0)\right)-\delta_{1}|\lambda|-\delta_{2}=|\lambda|\left(\frac{\left|\lambda-\lambda_{s}(0)\right|}{2}\left(1+p^{2}\right) Q^{\prime}\left(\lambda_{s}(0)\right)-\delta_{1}-\frac{\delta_{2}}{|\lambda|}\right),
$$

where numbers $\delta_{s}$ - has form (2.19). Therefore $\left|\lambda-\lambda_{s}\right|<R$ (3.9), then

$$
|\lambda|>\left|\lambda_{s}\right|-R>\left|\lambda_{1}\right|-R>\frac{\pi}{2(a+b)}-\frac{|q| r}{(a+b)(1+|k|)}>\frac{1}{a+b}\left(\frac{\pi}{2}-r\right)>0
$$

based on remark 2 , and that mean

$$
|\Delta(q, \lambda)|>|\lambda|\left(\frac{\left|\lambda-\lambda_{s}(0)\right|}{2}\left(1+p^{2}\right) Q^{\prime}\left(\lambda_{s}(0)\right)-\delta_{1}-\frac{\delta_{2}(a+b)}{\frac{\pi}{2}-r}\right)
$$

if the first part of this inequality is greater than zero, then

$$
\left|\lambda-\lambda_{s}(0)\right|>\frac{2 \delta_{1}+\frac{4 \delta_{2}(a+b)}{\pi-2 r}}{\left(1+p^{2}\right) Q^{\prime}\left(\lambda_{s}(0)\right)}
$$

then for such $\lambda \in R$ function $|\Delta(q, \lambda)|$ does not turn to zero. So, if

$$
\begin{equation*}
\frac{2 \delta_{1}+\frac{4 \delta_{2}(a+b)}{\pi-2 r}}{\left(1+p^{2}\right) Q^{\prime}\left(\lambda_{s}(0)\right)}<\left|\lambda-\lambda_{s}(0)\right|<R, \tag{3.11}
\end{equation*}
$$

then $|\Delta(q, \lambda)| \neq 0$ multiplicity (3.11)isn’t empty, if

$$
\frac{2 \delta_{1}+\frac{4 \delta_{2}(a+b)}{\pi-2 r}}{\left(1+p^{2}\right) Q^{\prime}\left(\lambda_{s}(0)\right)}<R,
$$

and using (3.7) i (3.9), we find that this inequality will certainly be satisfied if

$$
\begin{equation*}
2 \delta_{1}+\frac{4 \delta_{2}(a+b)}{\pi-2 r}<\left(1+p^{2}\right) \frac{q^{2} r^{2}}{1+|k|} \tag{3.12}
\end{equation*}
$$

So if the $\delta_{1}$ and $\delta_{2}$ (2.19) are such that holds (3.12), then the function $\Delta(q, \lambda)$ on the multiplicity (3.11) does not turn to 0 . The signs $\Delta(q, \lambda)$ and $\Delta(0, \lambda)$ on the left and right sides of multiplicity (3.11) coincide, and given that the signs of the function $\Delta(0, \lambda)$ on these parts are different, it follows that $\Delta(q, \lambda)$ it has at least one root on the multiplicity.

$$
\left|\lambda-\lambda_{s}(0)\right|<\frac{2 \delta_{1}+\frac{4 \delta_{2}(a+b)}{\pi-2 r}}{\left(1+p^{2}\right) Q^{\prime}\left(\lambda_{s}(0)\right)}
$$

## Lemma 3

If numbers $\delta_{1}$ and $\delta_{2}(2.19)$ satisfy inequality (3.12), where $p, q, r$ has form (1.10) and (3.8), then in the surrounding area

$$
\begin{equation*}
\left|\lambda-\lambda_{s}(0)\right|<\frac{2 \delta_{1}+\frac{4 \delta_{2}(a+b)}{\pi-2 r}}{\left(1+p^{2}\right)(a+b)|q| r} \tag{3.13}
\end{equation*}
$$

the zeros $\lambda_{s}$ ( 0 ) of the function $\Delta(0, \lambda)(1.6)$ contains at least one root $\lambda_{s}(q)$, of the perturbed characteristic function $\Delta(q, \lambda)(2.19)$.

## Main result

To prove that the characteristic function $\Delta(q, \lambda)$ has no other zeros, except $\lambda_{s}(q)$ we use Rousche's theorem. Let us denote by $\gamma_{1}$ the contour in the $\mathbb{C}$, formed by the straight lines that connect the points $\pi \frac{l}{a+b}(1+i), \pi \frac{l}{a+b}(-1+i), \pi \frac{l}{a+b}(-1-i), \pi \frac{l}{a+b}(1-i),(l \in \mathbb{N})$. We need a lower estimate for the function $\Delta(0, \lambda)$ ) on the contour $\gamma_{1}$ or, taking into account (3.1) a lower estimate for the function $Q(\lambda)$.

For $\lambda=\alpha+i \beta \in \mathbb{C}(c=a+b)$ have
$Q(\lambda)=\sin (\alpha+i \beta) c-k \sin q(\alpha+i \beta) c=\sin \alpha c \cosh \beta c+i \cos \alpha c \sinh \beta c-k(\sin \alpha q c \cosh \beta q c+i \cos \alpha q c \sinh \beta q c)$,
then
$|Q(\lambda)|^{2}=\sin ^{2} \alpha c \cosh ^{2} \beta c+k^{2} \sin ^{2} \alpha q c \cosh ^{2} \beta q c-2 k \sin \alpha c \sin \alpha q c \cosh \beta q c \cosh \beta c+\cos ^{2} \alpha \sinh ^{2} \beta c+$
$+k^{2} \cos ^{2} \alpha q c \sinh ^{2} \beta q c-2 k \cos \alpha c \cos \alpha q c \sinh \beta c \sinh \beta q c=\cosh ^{2} \beta c-\cos ^{2} \alpha c+k^{2}\left(\cosh ^{2} \beta q c-\cos ^{2} \alpha q c\right)-$
$-2 k \sin \alpha c \sin \alpha q c \cosh \beta q c \cosh \beta c-2 \mathrm{k} \cos \alpha c \cos \alpha q c \sinh \beta c \sinh \beta q c \geq(\cosh \beta c-|k| \cosh \beta q c)^{2}-$
$-\left(\cos ^{2} \alpha c+k^{2} \cos ^{2} \alpha q c\right)(1+|\sinh \beta c||\sinh \beta q c|) \geq(\cosh \beta c-|k| \cosh \beta q c)^{2}-\left(1+k^{2}\right)(1+|\sinh \beta c||\sinh \beta q c|)$.

It follows that
$|Q(\lambda)| \geq(\cosh \beta c-|k| \cosh \beta q c) \sqrt{1-\left(1+k^{2}\right) \frac{(1+|\sinh \beta c||\sinh \beta q c|)}{(\cosh \beta c-|k| \cosh \beta q c)^{2}}}$

Hence follows the statement

## Lemma 4

At $\lambda=\alpha+i \beta \in \mathbb{C}$ for function $\Delta(0, \lambda)(3.1)$ the inequality is true
$|\Delta(0, \lambda)|>|\lambda|(p+1) \cosh \beta q(a+b) \sqrt{1+k^{2}}$.
$\cdot\left(1-|\sin \alpha(a+b) \sin \alpha q(a+b)|-\left(\cos ^{2} \alpha(a+b)+k^{2} \cos ^{2} \alpha q(a+b)\right) \frac{1+\cosh ^{2} \beta(a+b)}{\cosh ^{2} \beta q(a+b)\left(1+k^{2}\right)}\right)^{1 / 2}$

Through $\gamma_{1}$ we denote the contour in $\mathbb{C}$ formed by the square with the vertices at the points
$\pi \frac{l}{a+b}(1+i), \pi \frac{l}{a+b}(-1+i), \pi \frac{l}{a+b}(-1-i), \pi \frac{l}{a+b}(1-i),(l \in \mathbb{N})$. On the vertical section (4.1) $\lambda=\frac{\pi l}{a+b}(1+\beta i)(-1<\beta<1)$ it follow that $|\Delta(0, \lambda)|>\frac{\pi l}{a+b} \sqrt{1+\beta^{2}}|p+1| \sqrt{1+k^{2}} \cosh \beta q(a+b)\left(1+\frac{1+\cosh ^{2} \beta(a+b)}{\cosh ^{2} \beta q(a+b)}\right)^{1 / 2}$,
and from theorem 3 it follows that for such $\lambda$ we have
$|\Phi(\lambda)|<\cosh \beta a \cosh \beta b\left(\delta_{1}|\lambda|+\delta_{2}\right)$,
then at $l \gg 1$ for $\forall \lambda=\frac{\pi l}{a+b}(1+\beta i) \beta \in[-1,1]$ we have
$|\Delta(0, \lambda)|>|\Phi(\lambda)|$
It is proved in a similar way that on the sides of the square $\gamma_{1}$ at $l \gg 1$ the inequality is true (4.2).
The following theorem can be formulated from the above.

## Theorem 4

Suppose that the functions $q_{1}(x)$ and $q_{2}(x)$ in (1.1) are such that inequality (3.12) holds, where $p, q, r$ are of the form (1.10) and (3.8). Then in each neighborhood (3.13) of the zero $\lambda_{s}(0)$ of the characteristic function $\Delta(0, \lambda)(1.6)$ of the unperturbed operator $L_{o}$ there is only one zero $\lambda_{s}(q)$ of the perturbed characteristic function $\Delta(q, \lambda)(2.19)$ of the operator $L_{q}$.

Therefore, when the potentials are small $q_{1}(x)$ and $q_{2}(x)$ which are expressed only in terms of the parameters of the boundary conditions (1.2) each corresponding value of the operator $L_{q}$ is located in a small neighborhood of the corresponding value of the unperturbed value of the operator $L_{o}$.

## Concluding remarks

Thus, we have shown that if the potentials are small, (3.12) holds, then the spectrum of the perturbed problem $\left|q_{1}(x)\right|+\left|q_{2}(x)\right| \neq 0$ differs little from the unperturbed problem. Consequently, the perturbed oscillations will be close to the unperturbed ones.

## Acknowledgements

The authors are very much grateful to the editor and anonymous reviewers for their valuable comments and careful reading of the manuscript.

## References

1. Levitan BM, Sargsjan IS. Introduction to spectral theory: selfadjoint ordinary differential operators (Translations of Mathematical Monographs). AMS. 1975; 39: 525 .
2. Marchenko VA Sturm. Liouville operators and applications. Operator Theory: Advances and Applications. Birkhauser Basel. 1986; 22:367.
3. Elbadri M. Initial Value Problems with Generalized Fractional Derivatives and Their Solutions via Generalized Laplace Decomposition Method Advances in Mathematical Physics. 2022; 3586802:7. https://doi.org/10.1155/2022/3586802
4. Hafez RM, Youssri YH. Shifted Gegenbauer-Gauss Collocation Method For Solving Fractional Neutral Functional-Differential Equations With Proportional Delays. Kragujevac Journal of Mathematics. 2022; 46(6):981-996.
5. Youssri YH. Two Fibonacci operational matrix pseudo-spectral schemes for nonlinear fractional Klein-Gordon equation.International Journal of Modern Physics C. 2022; 33:4; 19. https://doi.org/10.1142/S0129183122500498
6. Youssri YH. Orthonormal Ultraspherical Operational Matrix Algorithm for Fractal-Fractional Riccati Equation with Generalized Caputo Derivative.Fractal Fract. 2021; 5:3; 11. https://doi.org/10.3390/fractalfract5030100
7. Pivovarchuk VN. Inverse problem for the Sturm-Liouville equation on a simple graph//SIAM J. Math. Anal. 2000; 32(4):801-819.
8. MOller V Pivovarchik. Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and Their Applications. Birkhauser. Basel. 2015; 412.
9. MarchenkoVA, MarchenkoAV, Zolotarev VA. On a Spectral Inverse Problem in Perturbation Theory. Journal of Mathematical Physics, Analysis, Geometry. 2021; 95-115.
10. Atta AG, Youssri YH. Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel. Comp. Appl. Math. 2022; 41:381. https://doi.org/10.1007/s40314-022-02096-7
```
Discover a bigger Impact and Visibility of your article publication with
Peertechz Publications
```


## Highlights

```
* Signatory publisher of ORCID
* Signatory Publisher of DORA (San Francisco Declaration on Research Assessment)
* Articles archived in worlds' renowned service providers such as Portico, CNKI, AGRIS, TDNet, Base (Bielefeld University Library), CrossRef, Scilit, J-Gate etc.
* Journals indexed in ICMJE, SHERPA/ROMEO, Google Scholar etc.
* OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting)
* Dedicated Editorial Board for every journal
* Accurate and rapid peer-review process
* Increased citations of published articles through promotions
* Reduced timeline for article publication
Submit your articles and experience a new surge in publication services (https://www.peertechz.com/submission).```

